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Abstract  Artificial immune system (AIS) approaches, which are used in this work, are learning and optimization methods 
that can be applied to find the solution of many types of optimization problems. This paper presents an AIS approach applied to 
optimize the design of an incremental discrete variable structure controller (VSC) for minimizing the generalized minimum 
variance (GMV) strategy. Control design and implementation tests are assessed in a nonlinear continuous stirred tank reactor. 

Keywords Artificial immune system, variable structure controller, generalized minimum variance, stability.  

1    Introduction 

Sliding mode control (SMC) is a special case of 
variable structure control and it constitutes a 
nonlinear control technique that provides robustness, 
fast response and accuracy. Generally, the 
continuous-time variable structure system approach 
gives robustness to matched disturbances and system 
uncertainties. SMC advantages are insensibility to 
parameter variations, mismatch dynamics and 
external disturbances. 

Recently, the discrete version of the variable 
structure control based on the input-output transfer 
function has been received attention in the control 
research community worldwide (Furuta et al., 1989; 
Furuta, 1993, Pieper and Surgenor, 1993; Corradini 
and Orlando, 1995; Chan, 1999). 

In particular, when the variable structure control 
has been implemented by using the generalized 
minimum variance conception, the literature shows 
different control algorithms to deal with parametric 
uncertainty and to give a good dynamic for the 
controlled system. These modifications are based on 
control design factors such as: i) sliding surface; ii) 
switching term of the nonlinear part; iii) 
mathematical representation of the plant 
(deterministic or stochastic); iv) non-minimum or 
minimum phase; v) magnitude of the control signal; 
vi) dynamic for tracking setpoint changes and; vii) 
stabilization in the presence of disturbances (Furuta 
et al., 1989; Corradini and Orlando, 1995; Chan, 
1999). 

These early control methodologies have some 
characteristics such as: i) implement a positional 
algorithm; ii) zeros of the open-loop plant must be 

stable; iii) control weighting polynomial defined in 
the surface must be zero in the steady-state phase to 
ensure zero offset. On the other hand, the discrete 
variable structure control conception proposed in this 
paper, is overcoming these design conditions and it is 
based on the RST control structure connected to the 
generalized minimum variance control in order to 
simplify the control design and to improve the 
performance of the control system (Coelho and 
Sumar, 2001). 

The performance of this control approach 
depends not only on the control structure but also on 
the values of the controller parameters, mainly in 
control of nonlinear systems. Conventionally, these 
parameters are manually tuned by the designer, who 
attempts to find an acceptable controller solution. 
However, this relies on an adhoc approach to tuning, 
which depends on the experience of the designer. If 
the designer is not experienced, this process can 
become tedious and time consuming. In either case, 
there is no guarantee that the designed solution will 
perform satisfactorily as the tuning process depends 
on the qualitative judgment of the designer. A 
solution to this problem is to use optimization 
techniques that tune such parameters automatically 
(Alfaro-Cid et al., 2005). 

Evolutionary algorithms and swarm intelligence 
systems have been widely applied to different 
methods to tune variable structure control (Chow et 
al., 2003; You et al., 2004; Alfaro-Cid et al., 2005; 
McGookin and Murray-Smith, 2006). 

So, in this paper, the design of the incremental 
Variable Structure Controller (VSC) is optimized by 
an Artificial Immune System (AIS) for a nonlinear 
Continuous Stirred Tank Reactor (CSTR). The merits 
of AIS lie in immune recognition, reinforcement 
learning, feature extraction, immune memory, 



diversity, robustness, pattern recognition and 
memorization capabilities. 

Design and optimization aspects, in order to show 
the effectiveness and the potentiality of the 
incremental VSC, are shown. 

This paper is organized as follows. The design 
idea of the incremental VSC design is derived in 
section 2. Fundamentals of AIS are shown in section 
3. Application in CSTR plant and conclusion are 
given in sections 4 and 5, respectively. 

2   Incremental VSC Design 

A discrete input-output transfer function is 
representing the following monovariable plant where 

ku  is the input and ky  is the output:  
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Roots of )( 1−qA  and )( 1−qB  are not assumed to 
be in the unit disk. So, looking at the structure of the 
open-loop plant, the controller can deal with 
stable/unstable and minimum/non-minimum phase 
systems. 

The control objective is to minimize the variance 
of the controlled variable dks + , to give the control 
input satisfying 
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incremental control, and the polynomials 
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must be selected in order to guarantee a stable 
closed-loop system and they must satisfy the 
following Lemma (Corradini and Orlando, 1994): 
 

Lemma 1. The necessary and sufficient condition 
that the output making 0=+dks  stable is that all 
roots of 

01111 =+ −−−− )q(T)q(B)q(Q)q(A  

are inside the unit disk and )Q,B(),T,A(),T,Q(  
have no common roots outside of the unit disk, where 

)q(P)q(Q 11 −− = ∆ . 

 
The incremental control input to satisfy Eq. (2) is  
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The control input applied to the plant is given by 
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Observation 1: The control structure, Eq. (3), can be 
represented in the RST form, as shown in Fig. (1). 
 

Fig. 1. RST structure with additive uncertainty. 

 
In order to ensure stability for the closed-loop 

system, it is possible to analyze the effect of tuning 
parameters on the robust stability under the presence 
of plant mismatch by using the small gain theorem 
(Banerjee and Shah, 1995). Applying the small gain 
theorem in the system of Fig. 1, the following 
sufficient condition for stability can be derived: 
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Thus, the existence of at least one set of 

polynomials )( 1−qR , )( 1−qS  and )( 1−qT can be 
derived in order to guarantee a stable GMV control. 



The performance of the control law, Eq. (3), can 
be improved by adding an auxiliary input obtained by 
connecting the incremental GMV control with VSC 
(Corradini and Orlando, 1995). The incremental 
discrete control algorithm is based on the following 
theorem: 
 
Theorem 1. Given a system S of the form Eq. (1), the 
following incremental control law: 
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guarantees the achievement of a stable discrete 
sliding motion on the hyperplane 0=+dks , if kv  is 
chosen as 
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where ε  and σ  are positive scalars, with 10 << σ . 
 
Proof. Proof is omitted due to space limits. See 
Coelho and Sumar (2001) for details.  
             
Observation 2: The choice of the parameters σ  and 
ε  affects the duration and the shape of the initial 
transient of the control and output variables. Hence, 
their settings can be done according to the “best” 
tradeoff between acceptable initial control efforts and 
satisfactory transient duration. In this work, an AIS is 
employed to optimize the parameters σ  and ε . AIS 
is also utilized to optimize the parameters of 

polynomials )( 1−qP , )( 1−qR , )( 1−qS  and )( 1−qT . 
In this work, the total of estimated parameters using 
AIS is equal to 11. 

3   Artificial Immune System 

Artificial immune systems (AIS) are learning and 
optimization methods that can be used for the 
solution of many different types of optimization 
problems (Dasrupta, 1999; De Castro and Timmis, 
2003). 

A meta-heuristic optimization approach 
employing artificial immune network called opt-
aiNET algorithm to optimize the design of 
incremental VSC is proposed in this paper. The 
aiNET algorithm is a discrete immune network 
algorithm based on the artificial immune systems 
paradigm that was developed for data compression 
and clustering (De Castro and Von Zuben, 2001), and 
was also extended slightly and applied to 
optimization to create the algorithm opt-aiNET (De 
Castro and Timmis, 2002). Opt-aiNET, proposed in 
De Castro and Timmis (2002), evolves a population, 
which consists of a network of antibodies (considered 
as candidate solutions to the function being 
optimized). These undergo a process of evaluation 

against the objective function, clonal expansion, 
mutation, selection and interaction between 
themselves.  

Opt-aiNET is capable of performing local and 
global search, as well as to adjust dynamically the 
size of population (Campelo et al., 2006). Opt-aiNET 
creates a memory set of antibodies (points in the 
search space) that represent (over time) the best 
candidate solutions to the objective function. Opt-
aiNET is capable of either unimodal or multimodal 
optimization and can be characterized by five main 
features: (i) the population size is dynamically 
adjustable; (ii) it demonstrates exploitation and 
exploration of the search space; (iii) it determines the 
locations of multiple optima; (iv) it has the capability 
of maintaining many optima solutions; and (v) it has 
defined stopping criteria. The steps of opt-aiNET are 
summarized as follows (Coelho and Alotto, 2007): 
 
Initialization of the parameter setup 

The user must choose the key parameters that 
control the opt-aiNET, i.e., population size (M), 
suppression threshold (σs), number of clones 
generated for each cell (Nc), percentage of random 
new cells each iteration (d), scale of affinity 
proportion selection (β), and maximum number of 
iterations allowed (stop criterion), Ngen.  

Initialization of cell populations  

Set iteration t=0. Initialize a population of 
i=1,..,M cells (real-valued n-dimensional solution 
vectors) with random values generated according to a 
uniform probability distribution in the n dimensional 
problem space. Initialize the entire solution vector 
population in the given upper and lower limits of the 
search space. 

Evaluation of each network cell 

Evaluate the fitness value of each cell (in this 
work, the objective of the fitness function is to 
maximize the cost function).  

Generation of clones 

Generate a number Nc of clones for each network 
cell. The clones are offspring cells that are identical 
copies of their parent cell.  

Mutation operation 

Mutation is an operation that changes each clone 
proportionally to the fitness of the parent cells, but 
keeps the parent cell. Clones of each cell are mutated 
according to the affinity (Euclidean distance between 
two cells) of the parent cell. The affinity proportional 
mutation is performed according to equations (5) and 
(6), given by: 

      ),(Nc'c 10⋅+= α                             (5) 

      *1 fe−−= ρα                                 (6) 

where  'c  is a mutated cell c, N(0,1) is a Gaussian 
random variable of zero mean and unitary standard 



deviation, ρ is a parameter that controls the decay of 
the inverse exponential function, and *f  is the 
objective function of an individual normalized in the 
interval [0,1]. 

Evaluation the fitness of all network cells 

Evaluate the fitness value of all network cells of 
the population including new clones and mutated 
clones. 

Selection of fittest clones 

For each clone select the most fit and remove the 
others. 

Determination of affinity of all network cells 

Determine the affinity network cells and perform 
network suppression. 

Generate randomly d network cells 

Introduce a percentage d of randomly generated 
cells. Set the generation number for t = t + 1. Proceed 
to step of Evaluation of each network cell until a 
stopping criterion is met, usually a maximum number 
of iterations, tmax. The stopping criterion depends on 
the type of problem. 

4   Case Study and Simulation Results 

4.1. Continuous Stirred Tank Reactor (CSTR) 
The case study consists of an unstable nonlinear 
CSTR as shown in Fig. 2. Discrete dynamic 
equations for the reactor are given by (Cheng and 
Peng, 1997): 
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where 
1

x  and 
2

x  represent the dimensionless 

reactions concentration and reactor temperature, 
respectively, and the control input, u, is the 
dimensionless cooling jacket temperature. The 
physical parameters of the CSTR model equations 
are: 

a
D , γ , B  and β  which correspond to the 

Damköhler number, the activated energy, the heat of 
reaction and the heat transfer coefficient, 
respectively. Nominal system parameters are: 

0.072
a

D = , 20=γ , B = 8, 0.3=β  and 
s

T  is the 

sampling time (0.2 seconds). 
 

 
Fig. 2. CSTR plant. 

 
4.2. Simulation Results 
This section presents the simulation results for the 
tuning procedures described in section 3 for the 
incremental VSC. The procedure has been applied to 
the nonlinear CSTR plant in reference tracking (servo 
behavior).  

The objective function (to be minimized) by op-
aiNET is calculated using the expression of f given 
by: 
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where |ek| is the absolute value of elements of error 
signal, N was 400 samples. The objective function 
was choice for λ=0.3 in CSTR plant. The process 
input uk is constrained in range [-5,5]. The control 
objective is to keep the process output as close as 
possible to the reference. 

The opt-aiNET algorithm was implemented in 
Matlab (MathWorks). In this work, 30 independent 
runs were made for each of the optimization methods 
involving 30 different initial trial solutions 
(parameters of VSC) for the opt-aiNET.  

The setup of opt-aiNET algorithm used was: 
suppression threshold = 50, percentage of 
newcomers: d=50%, scale of the affinity proportional 
selection using a linear reduction of β with initial and 
final values of 5 and 100, respectively, and the 
number of clones generated for each cell is Nc=14. 
The population size N was 20 and the stopping 
criterion, tmax, was 200 generations for the opt-aiNET 
algorithm.  

Table 1 shows the maximum, minimum, mean, 
and standard deviation of objective function achieved 
by the op-aiNET for the VSC design. 

 
 
Table 1. Convergence of op-aiNET for 30 runs. 

objective function, f 
minimum maximum mean standard deviation 

50.21 59.05 53.20 1.95 
 
 
As indicated in Table 1, the best result of opt-

aiNET was f = 50.21. In this context, for the 
VSC/GMV, the optimized parameters were: 
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Response for the best servo simulation (30 runs 
by op-aiNET) is given in Fig. 3. For analysis of this 
behavior, the reference signal is changing such as: yr 
= 1 (from sample 1 to 100), yr = 3 (from sample 101 
to 200), yr = 5 (from sample 201 to 300), and yr = 6.5 
(from sample 301 to 400).  

 

 

 
Fig. 3. Servo response of the CSTR using VSC design based on 

op-aiNET. 
 
Best simulation result shows that the VSC/GMV 

controller presents good performance in reference 
tracking and provides a small control variance.  

The best design for servo response (Table 1) is 
validated in a simulation of regulatory response. For 
analysis of the regulatory behavior, the reference 
signal is changing of servo analysis such as: yr = 1.5 
(from sample 1 to 100), yr = 4 (from sample 101 to 
200), yr = 5.5 (from sample 201 to 300), and yr = 6 
(from sample 301 to 400). The regulatory behavior is 
also based on the rejection of additive disturbances in 
the process output when: (i) sample 50: yk = yk + 0.3; 
(ii) sample 140: yk = yk - 0.3; (iii) sample 230: yk = yk 
+ 0.5. 

The response of VSC/GMV design is given in 
Fig. 4. Performance of VSC/GMV design was 
affected by nonlinearity of CSTR. Furthermore, the 
optimized VSC/GMV design obtained fast response, 
reasonable control activity, and good ability of 
perturbation rejection. VSC/GMV ensures steady-
state behavior with offset-free for servo and 
regulatory cases. 

 

 
Fig. 4. Regulatory response of the CSTR using VSC design 

based on op-aiNET. 

5   Conclusion  

An incremental VSC design based on opt-aiNET 
optimization method was developed in this paper. 
VSC/GMV control was assessed in a nonlinear CSTR 
plant. Simulation results showed that the VSC/GMV 
controller was able to present a robust performance 
for the case study.  

The good performance in CSTR plant, indicated 
by the VSC/GMV using opt-aiNET approach, 
confirms the usefulness and robustness of the 
proposed method in nonlinear control for practical 
applications.  

Further studies are needed to compare the opt-
aiNET algorithm with other evolutionary algorithms 
in optimization of model-based control 
methodologies. 
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